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ABSTRACT

Android malware attacks have posed a severe threat to mobile
users, necessitating a significant demand for the automated de-
tection system. Among the various tools employed in malware
detection, graph representations (e.g., function call graphs) have
played a pivotal role in characterizing the behaviors of Android apps.
However, though achieving impressive performance in malware
detection, current state-of-the-art graph-based malware detectors
are vulnerable to adversarial examples. These adversarial exam-
ples are meticulously crafted by introducing specific perturbations
to normal malicious inputs. To defend against adversarial attacks,
existing defensive mechanisms are typically supplementary addi-
tions to detectors and exhibit significant limitations, often relying
on prior knowledge of adversarial examples and failing to defend
against unseen types of attacks effectively.

In this paper, we propose MaskDroid, a powerful detector with
a strong discriminative ability to identify malware and remarkable
robustness against adversarial attacks. Specifically, we introduce a
masking mechanism into the Graph Neural Network (GNN) based
framework, forcing MaskDroid to recover the whole input graph
using a small portion (e.g., 20%) of randomly selected nodes. This
strategy enables the model to understand the malicious semantics
and learn more stable representations, enhancing its robustness
against adversarial attacks. While capturing stable malicious se-
mantics in the form of dependencies inside the graph structures, we
further employ a contrastive module to encourage MaskDroid to
learn more compact representations for both the benign and mali-
cious classes to boost its discriminative power in detecting malware
from benign apps and adversarial examples. Extensive experiments
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validate the robustness of MaskDroid against various adversar-
ial attacks, showcasing its effectiveness in detecting malware in
real-world scenarios comparable to state-of-the-art approaches.
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1 INTRODUCTION

Android, as one of the most prevalent smartphone operating sys-
tems, has dominated over 85% of the mobile OS market share since
2018 [41]. However, its popularity and open nature have also made
it a primary target for cyberattacks [1, 44]. For example, Android
permits the installation of applications from unverified sources,
such as third-party markets, thereby providing attackers with easy
means to bundle and distribute malware-infected apps [10]. An-
droid malware, a.k.a., malicious software, has become one of the
primary security threats to the Android platform, with the number
of malware samples increasing exponentially over the years [5].

To mitigate these threats, machine learning (ML) has been widely
adopted to automatically extract malicious patterns from vari-
ous APK features for Android malware detection [22, 42, 44]. Ac-
cording to the features used, there are two research lines: syntax-
based [6, 10, 40, 61] and semantic-based detectors [31, 32, 46, 63, 64].

https://doi.org/10.1145/3691620.3695008
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Syntax-based methods typically utilize discrete features such as per-
missions, API calls, and intents to model app behaviors. However,
these methods might overlook the underlying program semantics,
limiting their detection capability [31, 64]. To address this issue,
a notable trend is to distill program semantics from apps’ graph
representations for malware detection. Among these graph-based
approaches, Function Call Graphs (FCGs) and their variants are
extensively used and have proven effective [31, 46, 63], as they en-
capsulate the invocation relationship among API calls, offering deep
insights about how an app works [38]. For example, MsDroid [31]
utilizes code snippets around sensitive API calls in FCGs to model
app behaviors and leverages graph neural networks (GNNs) to
capture corresponding semantics for malware detection.

While existing graph-based malware detectors have demon-
strated promising results in detecting malware, they are vulnerable
to adversarial examples crafted by carefully introducing pertur-
bations to malicious inputs [15, 22, 42, 69, 71]. For example, ad-
versaries can modify the most influential edges or nodes in apps’
graph representations to evade the decision boundary, thereby un-
dermining the detectors’ performance [38, 71]. This is because of
the inherent fragility of ML models, where small but intentional
perturbations can lead to incorrect predictions with high confi-
dence [11, 17, 24, 45]. Unfortunately, there are few defense mecha-
nisms available to enhance the robustness of graph-based malware
detectors against adversarial attacks, except for several general-
purpose supplemental strategies, like adversarial training [7, 24, 60].
However, these strategies often require a large number of adver-
sarial examples for training, which is impractical in real-world
scenarios [27, 50]. Additionally, they may not be effective against
unseen types of adversarial examples. As such, we argue that the
current defense mechanisms are insufficient to meet the demands
posed by adversarial attacks, highlighting the need for more robust
solutions, especially those that enhance the detector itself.

In this paper, we aim to propose a novel graph-based Android
malware detector, MaskDroid, that can effectively handle adver-
sarial attacks while maintaining comparable detection accuracy.
To achieve this goal, we need to learn stable representations of
malicious behaviors that remain consistent even if the input graph
is adversarially perturbed. Specifically, malware developers often
conceal their intentions by mimicking the behavior of benign apps,
embedding a small portion of malicious code within a bulk of be-
nign processes [2, 32]. When representing the app in a graph form,
the malicious code appears as a small sub-graph embedded within
the overall graph representation. Adversarial examples preserve the
codes (i.e., malicious subgraphs) responsible for the malicious oper-
ations, while strategically introducing additional nodes or edges to
confound the detectors [40]. Based on this observation, we note that
if we can learn a stable representation encoding the malicious be-
havior, we can achieve a robust detector that can effectively detect
both malware and adversarial examples.

To guide MaskDroid to learn stable representations of mali-
cious behaviors within the graph representations, our methodology
involves introducing uncertainty and forcing the model to contend
with it through a reconstruction module. Specifically, we first apply
a random masking mechanism [29, 58] to the input graph, where a
substantial proportion of nodes (e.g., 80%) are masked out. Then we

use graph neural networks to encode and decode the masked graph,
forcing MaskDroid to recover the masked node features using
the remaining nodes (e.g., 20%). By doing so, MaskDroid gains a
holistic understanding of the malicious behaviors and develops the
ability to generate stable representations even when the input is
perturbed, enhancing its robustness against adversarial attacks.

With stable representations that comprehensively grasp the se-
mantics of the malicious structures, we proceed to determine the
class (i.e., benign or malicious) of the input graph. Instead of per-
forming direct classification, MaskDroid incorporates a contrastive
module [67] to enhance its discriminative power. The insight behind
this is that samples within the same class can complement each
other and should be pulled closer together, while those in different
classes should be pushed apart. To this end, we define two proxy
representations as anchors for the benign and malicious classes.
During the training process, we calculate the distance between the
input instance and the two proxies to update their positions. The
prediction is made by checking which proxy the instance is closer
to. The contrastive module further compresses the representations
and refines the decision boundary between benign and malicious
classes, enhancing MaskDroid’s ability to distinguish malware
from benign apps and adversarial examples.

To investigate the effectiveness and robustness of MaskDroid
in Android malware detection, we conduct extensive experiments
on a comprehensive dataset comprising 102,459 benign and 11,751
malicious apps collected over five years, from 2016 to 2020. We
further compare MaskDroid with five state-of-the-art malware de-
tectors, including three graph-based detectors, i.e.,MamaDroid [46],
MalScan [63], and MsDroid [31], and two syntax-based detectors,
i.e.,Drebin [10] and RAMDA [40]. Experimental results demonstrate
that MaskDroid achieves the most robust performance against
adversarial attacks under various settings (e.g., reducing the attack
success rate from 41.54% to 32.0%) while maintaining comparable
detection accuracy to the state-of-the-art detectors. Through ab-
lation studies, we further validate that each design choice (e.g.,
contrastive module and reconstruction module) in MaskDroid
contributes to its robustness and effectiveness.

In summary, we make the following contributions:

• To the best of our knowledge, we are the first to enhance the
robustness of the graph-based malware detection model against
adversarial attacks without sacrificing detection accuracy.

• We present MaskDroid, a novel graph-based Android malware
detector that utilizes a reconstruction task to guide the model
to learn stable representations of malicious behaviors, while
incorporating a contrastive module to enhance its discriminative
power for malware detection.

• We conduct extensive evaluations against five state-of-the-art
approaches on data sourced fromAndroZoo [9]. Experimental re-
sults show that MaskDroid exhibits superior robustness against
adversarial attacks compared to the baselines while maintain-
ing promising detection accuracy. Our codes are available at
https://github.com/SophieZheng998/MaskDroid.

2 PRELIMINARIES

In this section, we first introduce commonly used graph representa-
tions (i.e., Function Call Graph and its variants) in Android malware

https://github.com/SophieZheng998/MaskDroid
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Figure 1: Partial Function Call Graph (FCG) of an app.

detection. Then, we formally formulate the problem of graph-based
malware detection and adversarial example attacks.

2.1 Graph Representations

The graph representations of Android apps encode both the se-
mantic and structural information and have been widely used in
Android malware detection [31, 31, 32, 46, 63]. Among these, the
Function Call Graph (FCG) is a popular representation that cap-
tures the caller-callee relationships among the API calls in an app.
Figure 1 depicts a partial Function Call Graph (FCG) of a real-world
Android application [4], where nodes (e.g., getWifiIPAddress()) rep-
resent API calls, and the edges denote method invocations (e.g.,
updateServerList() calls addALL()). Detectors like MalScan [63] and
HomDroid [64] analyze FCGs akin to social networks, leveraging
centrality and community detection algorithms to uncover mali-
cious patterns for malware detection.

Additionally, several variants of FCGs have been proposed to
model app behaviors. For example, MamaDroid [46] abstracts the
nodes of FCGs according to their packages or family names to con-
struct a higher-level, abstracted graph representation. MsDroid [31]
uses sensitive API calls (e.g., getSystemService()) as seed nodes to
generate graph snippets around them, modeling apps as a collection
of subgraphs. This is because sensitive behaviors are often carried
out by a small proportion of the code requiring the invocation of
sensitive API calls to achieve their goals. MsDroid further utilizes
the opcode and required permissions of functions as the node fea-
tures to initialize the graph representation. In our study, we adopt
the graph structure proposed in MsDroid due to its simplicity and
proven effectiveness in detecting Android malware.

2.2 Problem Formulation

Android Malware Detection. Graph-based Android malware de-
tectors take the graph representation of an app as input and output
the probability of it being malicious. Here, we formally define the
input graph as G = (V, E,X), where each node 𝑣 ∈ V represents
an API call, and each edge 𝑒(𝑢,𝑣) ∈ E denotes the invocation from
node 𝑢 to node 𝑣 . The set X collects the features of the nodes. The
goal of the malware detector is to learn a classifier C : G → {0, 1},
where 0 denotes a benign app, and 1 denotes malware.
Adversarial Examples. Adversarial examples are crafted to mis-
lead learning classifiers by introducing perturbations to the input
features while preserving the malicious functionalities [15, 37, 38,
54, 71]. In the context of graph-based Android malware detection,
these adversarial examples can be represented as deliberately al-
tered target graph-based features to bypass the classifier C. Suppose

P denotes the perturbation operation, and 𝐿(·) is the label predicted
by the classifier C. Then, the adversarial example G′ can be formu-
lated as G′ = P(G) = G + 𝛿 , where 𝛿 signifies the perturbations to
the graph structure, such as adding nodes and edges. The adversar-
ial manipulation process can be represented as:

𝐿(C(G)) ̸= 𝐿(C(P(G))). (1)

Intuitively, an ideal Android malware detector should be highly
effective in identifying malware while also being robust against
adversarial examples. However, current models predominantly em-
phasize detection effectiveness, often at the expense of robust-
ness [10, 30, 38, 63]. Only a few studies have attempted to improve
the robustness of Android malware detectors against adversarial
examples. For instance, RAMDA [40] is a state-of-the-art approach
that aims to improve detectors’ robustness by squeezing the room of
adversarial examples in the latent space. Nonetheless, this method
sacrifices detection effectiveness since it also filters out benign
apps that are close to adversarial examples. As such, designing
robust and effective Android malware detectors remains an open
challenge [22, 42]. In this study, we propose a novel graph-based
approach, MaskDroid, detailed in Section 3, to further advance this
field. Our approach not only bolsters robustness against adversarial
examples but also ensures high detection effectiveness through a
more precise interpretation of the program semantics of apps.

3 METHODOLOGY

In this section, we present a novel learning framework, MaskDroid,
designed to improve the robustness of Android malware detection
without compromising detection performance. Guided by amasking
mechanism, MaskDroid can more effectively explore the structural
and semantic information encoded in the graph representations,
thereby enhancing the understanding of potential malicious behav-
iors. Additionally, we further incorporate a proxy-based contrastive
learning module to boost MaskDroid’s ability to discriminate be-
tween benign and malicious instances.

3.1 Overview

Figure 2 illustrates the high-level overview of MaskDroid. The
model consists of two main components: (1) a self-supervised re-
construction module that utilizes graph neural networks (GNNs)
along with a graph mask mechanism to learn semantics of the input
graphs, and (2) a proxy-based contrastive learning module, which
leverages the mutual information across samples in similar and
dissimilar classes to enhance the model’s discriminatory power.

In the reconstruction part, we first mask a proportion of the
nodes in the input graph. A GNN encoder is then applied to map
the features of each node into a latent space. Following this, a GNN
decoder reconstructs the masked-out nodes based on the latent
representations of the remaining nodes. This self-supervised task
promotes the learning of the underlying structures and dependencies
within the input graphs, thereby deepening the model’s understanding

of app behaviors.

With the graph-level representation obtained from the graph en-
coder, we proceed to the contrastive module. The principle behind
this module is that apps within the same class (i.e., benign or mali-

cious) should be closer to each other, while apps from different classes
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[MASK]
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Figure 2: The framework of MaskDroid. The training phase comprises two modules. The upper dashed-line bracket represents

the self-supervised reconstruction module, while the lower bracket represents the proxy-based contrastive learning module.

should be more distant. To achieve this, we initialize two proxy
representations as the anchors of benign and malicious classes, re-
spectively. During the training phase, we pull a sample closer to the
anchor of its class and push it away from the anchor of a different
class. These proxy representations are updated simultaneously to
maintain their roles as class anchors.

To predict the category of an app, MaskDroid disables the mask
mechanism and processes the input instance through the encoder to
obtain a graph-level representation. Finally, it determines whether
the app is benign or malicious based on which proxy the graph-level
representation is closer to.

3.2 Reconstruction Module

We now present the details of the self-supervised reconstruction
module in MaskDroid. For better understanding, we will first recap
the graph representation used in MaskDroid before delving into
the module itself.
Recap of Graph Representation. The graph representation uti-
lizes the function call graph (FCG) as its input. Specifically, we begin
by identifying a set of sensitive API calls (e.g., getIpAddress()) within
an app’s FCG to serve as seed nodes. Next, we extract subgraphs
centered on these seed nodes at a fixed depth to form the input
graph. It is worth noting that focusing on sensitive API calls and
their surrounding contexts can effectively capture apps’ malicious
behaviors, as these behaviors are often carried out by a small part
around sensitive API calls. This strategy has been validated in previ-
ous studies [26, 63, 64]. To further enhance the representation, each
node is initialized with the opcode and required permissions associ-
ated with its corresponding API call. The opcode and permissions
are pivotal in understanding the semantics of API calls, as they
provide critical insights into app behaviors [31, 36]. For instance,
the opcode invoke signifies that one function must call another to

complete a task, while the permission SEND_SMS denotes the app’s
capability to send text messages.

Here, we begin with the initialization of node features and then
introduce how we mask and reconstruct the graph to learn the
underlying program semantics in a self-supervised manner.

3.2.1 Node Initialization. Given the graph representation, G =
(V, E,X), each node 𝑣 ∈ V is characterized by its attributes (i.e.,
opcode and permissions) that describe the API call. To capture
this information, we initialize the node feature x𝑣 ∈ R𝑑 as the
concatenation of the embeddings for the opcode and permissions:

x𝑣 = 𝑛𝑣𝑜𝑝 | | 𝑛𝑣𝑝𝑒𝑟 , (2)

where𝑛𝑣𝑜𝑝 and𝑛𝑣𝑝𝑒𝑟 represent the one-hot encodings of the opcode
and permissions, respectively.

3.2.2 Graph Reconstruction. Our objective is to learn a high-
quality representation that is resilient to adversarial attacks while
ensuring optimal detection performance. The reconstruction mod-
ule supports this goal by encouraging the model to recover masked
nodes using unmasked nodes, effectively capturing the underlying
structural and semantic information within the input graph. Conse-
quently, even if the input graph is partially corrupted, MaskDroid
retains its ability to discern malicious semantics, making it more
robust to adversarial attacks.
Graph Masking and Encoder. We apply uniform random sam-
pling to choose a subset of nodes Ṽ ⊂ V and mask their corre-
sponding representations with a learnable vector x[𝑀]. This strat-
egy ensures that for each node, its neighbors are neither all masked
nor all visible [33]. Based on this, it is easier to recover the masked
nodes with their neighboring unmasked nodes, facilitating the train-
ing of the model to understand the graph structure. Formally, the
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node feature x̃𝑣 of the masked graph G̃ can be defined as:

x̃𝑣 =

{
x[𝑀] 𝑣 ∈ Ṽ,

x𝑣 𝑣 /∈ Ṽ .
(3)

Considering the inherent graph nature of themasked graph,MaskDroid
utilizes graph neural networks [28] (GNNs) to analyze the structural
information and learn the corresponding node representations, i.e.,
embeddings. GNNs are particularly suited for this as they recur-
sively propagate and aggregate node features across edges, enabling
themodel to capture both local and global graph dependencies. Take
the sequence (getAndroidIPAddress() → getWifiIPAddress() → isWi-

fiEnabled() | getIpAddress()) depicted in Figure 1 as an example. If
we examine the nodes in isolation, we only see that the app invokes
several Wifi-related functions, e.g., getWifiIPAddress(). It is difficult
to capture how the app executes the entire process of checking the
network status and obtaining the IP address. However, by leverag-
ing GNNs, MaskDroid can better explore the multi-hop relation
between nodes — such as propagating information from getWifi-

IPAddress() to isWifiEnabled() and getIpAddress() — enhancing the
understanding of how the app works. Formally, the representation
of a node 𝑣 at layer 𝑙 + 1 is updated by aggregating the embeddings
of its neighbors as follows:

x̃
(𝑙+1)
𝑣 = 𝜎((̃x(𝑙 )𝑣 +

∑︁
𝑢∈N𝑣

x̃
(𝑙 )
𝑣√︁

|N𝑢 | |N𝑣 |
)W(𝑙 )

𝛼 ), (4)

where N𝑣 represents the set of neighbors of node 𝑣 , W(𝑙 )
𝛼 is the

weight matrix at layer 𝑙 , and 𝜎 is the activation function, such as
ReLU or LeakyReLU. After 𝐿 layers of propagation, the final node
embeddings are obtained as h𝑣 = x̃

(𝐿)
𝑣 .

Graph Remasking and Decoder. With the latent representation
h𝑣 for each node in the masked graph, the next step is to recover the
masked nodes and reconstruct the original graph. If MaskDroid
can accurately recover the masked nodes, it indicates that the model
can infer the missing information based on the surrounding nodes,
enhancing its robustness to adversarial attacks. For example, in
Figure 1, getWifiIPAddress() is masked out, and the model is trained
to recover it based on its surrounding nodes, such as getAndroidI-
PAddress(), isWifiEnabled() and getIpAddress(). This implies that
even if an adversary partially alters the graph, MaskDroid can still
deduce that the app is attempting to obtain the Wifi status and IP
address. With this stable understanding, MaskDroid can still make
accurate predictions.

To boost themodel’s ability to recover masked nodes based solely
on their surrounding nodes, we re-mask the masked nodes in Ṽ
to prevent the model from memorizing them [33]. Specifically, the
re-masked representation h̃𝑣 is defined as follows:

h̃𝑣 =

{
h[𝑀] 𝑣 ∈ Ṽ,

h𝑣 𝑣 /∈ Ṽ .
(5)

where h[𝑀] is a learnable vector used to re-mask selected nodes. In
our implementation, we simply set the re-masked vector h[𝑀] to
zero due to its effectiveness, leaving more sophisticated strategies
for future work. The re-masked representation is then fed into the
decoder 𝑓𝐷 to reconstruct the original node features. Similar to the
encoder, the decoder also utilizes the GNN architecture, which is

better to capture the structural information and reconstruct the
masked nodes.

z𝑣 = 𝑓𝐷 (h̃𝑣 ) = GNN(h̃𝑣 ). (6)

Here, for clarity, we omit the details of how the decoder propagates
and aggregates information along the graph, as this process can be
designed in a manner similar to the encoder.

To train the model, we define the reconstruction loss Lrec to
measure the discrepancy between the original node features and the
reconstructed features. Particularly, we employ the cosine similarity
to measure their distance as follows:

Lrec =
1
|Ṽ |

∑︁
𝑣∈Ṽ

(1 − x
𝑇
𝑣 z𝑣

∥x𝑣 ∥·∥z𝑣 ∥
)2 . (7)

In summary, through the self-supervised graph reconstruction
learning task, MaskDroid gains a holistic understanding of the
graph structures and semantics, which is crucial for the success of
the subsequent discrimination task.

3.3 Contrastive Module

With the stable representation that captures app semantics, we
now turn to the contrastive module, which aims to enhance the
model’s discriminatory power. The principle behind this module is
intuitive: apps executing similar behaviors should cluster together
and mutually reinforce each other, while apps from different classes
should be more distant from each other.

Towards this end, we adopt a proxy-based contrastive learning
strategy [67] to explore the mutual information across samples in
similar and dissimilar classes. Since Android malware detection is
a binary classification task, we define two proxies, p0 and p1 for
benign and malicious classes, respectively. The proxy representa-
tions are learnable vectors with random initialization, utilized to
capture the distinctions between benign and malicious apps, facil-
itating their separation in the latent space. During training, each
instance is pulled closer to the proxy of its own class while being
pushed further from the other proxy. The two proxy vectors are
updated simultaneously with the model parameters throughout the
training process to maintain their roles as class anchors. Assume
the graph-level representation obtained from the encoder 𝑓𝐸 is g𝑖
for the 𝑖-th instance. Each instance has a supervised label 𝑦𝑖 indi-
cating whether it belongs to the benign or malicious class, where
0 represents benign and 1 represents malicious. The contrastive
learning process can be defined as follows:

Lcl = 𝑦𝑖 ·
[
(

g𝑖 · p0
∥g𝑖 ∥∥p0∥

)2 + (1 −
g𝑖 · p1

∥g𝑖 ∥∥p1∥
)2
]

(8)

+ (1 − 𝑦𝑖 ) ·
[
(

g𝑖 · p1
∥g𝑖 ∥∥p1∥

)2 + (1 −
g𝑖 · p0

∥g𝑖 ∥∥p0∥
)2
]
.

After the training phase, the two proxies p0 and p1 aggregate
the information of all instances in or not in their respective classes,
serving as the class anchors for the inference phase.

3.4 Android Malware Detection

To optimize the model for Android malware detection, we combine
the reconstruction and contrastive modules into a joint training
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framework. The final objective of MaskDroid is defined as:

L = 𝜆1 · Lrec + 𝜆2 · Lcl, (9)

where 𝜆1 and 𝜆2 are the hyper-parameters to control the strength
of two modules. By minimizing this objective, MaskDroid learns a
high-quality representation that captures app semantics and main-
tains two anchors that consider all instances in the training set,
enhancing the model’s robustness and discriminatory power.

In the detection phase, MaskDroid first transforms the input
graph into a graph-level representation using the encoder 𝑓𝐸 . Then
it calculates the distance between the graph-level representation
and the two anchors to determine whether the input instance is
benign or malicious.

4 EVALUATION

In this section, we evaluate the performance of MaskDroid by
answering the following research questions (RQs):

• RQ1: Does MaskDroid successfully improve the robustness
against different adversarial attacks (e.g., white-box and black-
box attacks) compared to its baselines?

• RQ2: Does MaskDroid sacrifice detection effectiveness to en-
hance its robustness against adversarial attacks?

• RQ3: To what extent do different design choices affect the per-
formance of MaskDroid on counteracting adversarial attacks
and detecting malware?

• RQ4: Does MaskDroid require more computational resources
to complete its detection?

4.1 Experimental Setup

4.1.1 Implementation. We utilize Androguard [3] to decompile
APKs and extract the Function Call Graph (FCG) for each app.
Based on the extracted FCGs, we construct the input graph for
our model in a three-step procedure: (a) we traverse the FCG to
collect sensitive API calls. It is worth noting that we focus on the
sensitive API calls reported by PSCount [12] and Axplorer [13],
as they include the most commonly used sensitive API calls in
Android malware [31, 63, 64]; (b) we take the collected sensitive
API calls as roots and perform a breadth-first search to collect the
call sequences within a certain depth (i.e., 2), then merge them into
the input graph; (c) we initialize the nodes in the input graph with
their corresponding opcodes and permissions.

To find optimal hyper-parameters for MaskDroid, we employ a
grid search strategy. The learning rate is tuned from {0.1,0.01,0.001,
0.0001}, and the mask rate is searched within {0.1,0.2, 0.3, 0.4, 0.5,
0.6,0.7, 0.8,0.9}. For experiments in Sections 4.2 and 4.3, we use the
entire dataset from 2016 to 2020, finding that mask rate = 0.8 yields
the best performance. As such, we choose 0.8 as the masking rate.
For the ablation study in Sections 4.4 and 4.5, we use data from
2020 and find 0.5 is the optimal masking rate. Furthermore, the
number of GNN layers in both the encoder 𝑓𝐸 and decoder 𝑓𝐷 is
tuned among {1,2,3}. Based on achieving the best performance, we
present results under the configuration of a mask rate of 0.8, 0.001
learning rate, and two 2-layer GNNs for encoder and decoder. In
addition, 𝜆1 and 𝜆2 are set to be equal in our experimental setting.

Table 1: Evaluation Dataset Statistics. The samples cover

three years from 2016 to 2020 and maintain a 9:1 ratio of

benign to malicious apps.

Year Begin Malware M+B M/(M+B)

2016 21,292 2,390 23,682 10.1%
2017 21,006 2,389 23,395 10.2%
2018 20,099 2,326 22,425 10.4%
2019 20,260 2,345 22,605 10.4%
2020 19,802 2,301 22,103 10.4%
Total 102,459 11,751 114,210 10.3%

All experiments are performed on a server with an Intel Xeon
Gold 6248 CPU@2.50GHz, 188GB physical memory, and anNVIDIA
Tesla V100 GPU. The OS is Ubuntu 20.04.2 LTS.

4.1.2 Datasets. To rigorously assessMaskDroid’s performance,
we source our dataset from AndroZoo [9], a continuously expand-
ing repository of Android apps that aggregates apps from several
sources, such as Google Play, Appchina, and Anzhi. Our dataset con-
sists of 114,210 apps, among which 102,459 are benign and 11,751
are malicious, spanning from 2016 to 2020, as depicted in Table 1.

Importantly, the dataset adheres to the guidance proposed by
Tesseract [52]. Avoid Grayware: The ambiguous nature of gray-
ware can potentially skew the performance of learning models.
To counteract this threat, we utilize the positive anti-virus alerts
from VirusTotal [59], represented by 𝑝 , to filter out grayware. In
particular, apps with 𝑝 ≥ 4 are labeled malicious, whereas those
with 𝑝 = 0 are classified as benign. Goodware-to-Malware Ratio:
Previous studies have verified that the ratio of benign to malicious
apps in the wild is notably imbalanced, with malware constituting
a small fraction ( 10%) [16, 52, 70]. To more accurately gauge the
effectiveness of our approach in real-world scenarios, we ensure
the malware proportion in our dataset is set at 10%. Additionally,
we sample the dataset from 2016 to 2020 to cover a wide range of
apps and reflect the temporal dynamics of malware evolution. In
our experiments, we randomly split each dataset into three disjoint
sets: training, validation, and testing, with proportions of 70%, 20%,
and 10%, respectively. We also ensure all the disjoint sets exhibit a
9:1 ratio of benign to malicious apps.

4.1.3 Baselines. To comprehensively investigate the performance
of MaskDroid, we compare it with three state-of-the-art graph-
based detection approaches: MamaDroid, MalScan, and MsDroid,
as well as two non-graph-based detectors: Drebin and RAMDA.
• MamaDroid [46]: This method abstracts Function Call Graphs

(FCGs) according to the package or family level of function
names. It then constructs Markov Chains and calculates the
transition probabilities between different nodes, which serve as
the feature vector to train a Random Forest classifier.

• MalScan [63]: This algorithm treats FCGs as social networks
and conducts centrality analysis on sensitive API calls to capture
APKs’ semantics for classification.

• MsDroid [31]: This detector is built on the key insight that
malicious operations often in code snippets around sensitive
API calls. It thus models app-sensitive behaviors as subgraphs
around sensitive API calls and feeds them into a GNN classifier.
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Figure 3: Robustness Evaluation against White-Box Adver-

sarial Attacks (mask rate 𝛾= 0.8).

• Drebin [10]: This approach first extracts features like permis-
sions, intents, code strings, and API calls from APKs using static
analysis, and then trains an SVM classifier to detect malware.

• RAMDA [40]: This method is a state-of-the-art approach aimed
at improving detectors’ robustness against adversarial attacks.
Specifically, it introduces a Variational Autoencoder (VAE) to
learn a compact representation from its input features (i.e., in-
tents, permissions, and API calls) and then trains a binary classi-
fier for malware detection.

4.2 Robustness Enhancement (RQ1)

Settings. In this RQ, we investigate whether MaskDroid can
effectively enhance its robustness against adversarial attacks com-
pared to state-of-the-art detectors. Similar to previous work [38, 42],
we measure the resilience of these detectors against adversarial
attacks using two metrics: (a) Attack Success Rate (ASR), which
indicates the percentage of adversarial examples that successfully
evade detection, and (b) Average Perturbation Ratio (APR), which
quantifies the average percentage of perturbed edges in the graph
representation. Note that we only report APR on MaskDroid and
its graph-based competitors, as it is not comparable with approaches
that use different feature representations. For a fair comparison, we
conduct this experiment on the whole dataset from 2016 to 2020
and set the maximum number of iterations to 100 for all models.

To comprehensively explore the robustness of MaskDroid, we
implement a representative attack algorithm, Integrated Gradient
Guided JSMA (IG-JSMA) attack [62], under two distinct scenar-
ios: white-box and black-box. JSMA has been widely employed
to craft adversarial examples (AEs) for evading Android malware
detectors [15, 42, 63]. Specifically, it perturbs the most influen-
tial features based on indicative forward derivatives to create AEs.
Additionally, we adopt previous strategies [15, 38] to ensure the
generated adversarial examples can be repacked into APKs. For
feature-vector-based approaches like Drebin, we follow [15] by con-
straining modifications to focus on vector bits that are 0, changing
0s to 1s. This ensures that all required permissions or functions
remain unchanged, preserving functionality. For graph-based ap-
proaches like MaskDroid, we introduce edges that do not affect
APK functionality, in line with the technique described in [38].

Table 2: Robustness Evaluation against Black-Box Adversar-

ial Attacks (mask rate 𝛾= 0.8).

Detectors Malscan MamaDroid Drebin

ASR 98.5% 69.0% 100%

APR - - -

Detectors MsDroid RAMDA MaskDroid

ASR 13.2% 19.2% 19.1%

APR 0.5% 1.5% 10.1%

4.2.1 White-Box Attack Defense. White-box adversarial attacks
occur when attackers possess full knowledge of the victim model,
including training data, model structure, parameters, gradient in-
formation, and prediction results [24]. In this scenario, we exclude
Mamadroid [46], Malscan [63], and Drebin [10], as they utilize tradi-
tional machine learning methods rather than deep neural networks,
preventing us from calculating their gradient information.

Figure 3 illustrates the results of MsDroid [31], RAMDA [40],
and MaskDroid against white-box adversarial attacks. From this
figure, we observe that MaskDroid consistently outperforms its
competitors in terms of both ASR (32.0%) and APR (8.1%). Specif-
ically, the lower ASR indicates that MaskDroid is more resilient
against adversarial attacks than MsDroid and RAMDA. Addition-
ally, the higher APR suggests that MaskDroid requires perturbing
more edges to evade detection, meaning adversaries need to exert
more effort to craft adversarial examples. This can be attributed to
the stable representations learned by MaskDroid by reconstruct-
ing the whole graph from a small portion of nodes, which enhances
its robustness against adversarial attacks.

4.2.2 Black-Box Attack Defense. In real-world scenarios, attack-
ers do not always have access to the detailed structures and pa-
rameters of the malware detection systems and are often limited to
certain knowledge, such as the training dataset and classification
results [34, 38, 39]. In this context, the typical attack strategy is to
distill a substitution model that mimics the behavior of the original
black-box model, and then calculate gradients based on the substi-
tution model to simulate a white-box attack. We follow the same
strategy to conduct a black-box attack on the substitution model.
Specifically, we use an MLP to mimic the learning models of Ma-
maDroid [46], MalScan [63], Drebin [10] and RAMDA [40]. For the
model of MsDroid [31], we use a two-layer GNN encoder followed
by an MLP classifier to mimic its behavior. To train the substitution
models, we use the labels predicted by the target black-box models.
For example, we first collect the predictions of MamaDroid on the
training set, then train an MLP to mimic MamaDroid’s behavior
using the collected predictions as labels.

Table 2 presents the results of MaskDroid and its baselines
against black-box adversarial attacks. Note that we exclude the
APR for MamaDroid, MalScan, and Drebin, as they do not use
graph representations. From the table, we find that Drebin [10]
is the most vulnerable to black-box adversarial attacks, with an
ASR of 100%. This is because Drebin is based on binary features,
which are easy to manipulate. We know that Malscan [63] and
MamaDroid [46] extract features from the FCGs, while MamaDroid
is more robust than Malscan, with an ASR of 69.0%. This increased
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Table 3: The detection effectiveness of MaskDroid and its

baselines on the dataset from 2016 to 2020.

Detectors Precision Recall F1 Accuracy

Malscan 0.811 0.805 0.808 0.962

MamaDroid 0.922 0.768 0.838 0.970

Drebin 0.763 0.712 0.736 0.949

MsDroid 0.582 0.615 0.598 0.917

RAMDA 0.821 0.800 0.811 0.962

MaskDroid 0.709 0.876 0.783 0.951

robustness is because MamaDroid abstracts the FCGs according to
the package or family level of function names, making it more diffi-
cult to perturb, aligning with previous findings [22]. MsDroid [31]
and RAMDA [40] achieve ASRs of 13.2% and 19.2%, respectively,
which are lower or comparable to MaskDroid. While MaskDroid
achieves the highest APR (10.1%), indicating it is very difficult to
attack in real-world scenarios. Specifically, a higher APR indicates
that more iterations are needed and more edges must be modified
to craft adversarial examples (AEs). Given the large app graph size
and the constraint that AEs can be repacked into APKs, finding a
usable edge is not trivial, making the attack ineffective.

Result 1: Compared with state-of-the-art Android malware de-
tection approaches, MaskDroid enhances robustness against
adversarial attacks in both white-box and black-box scenarios.
Notably, in the white-box attack,MaskDroid reduces the attack
success rate by 9.5% against the second-best baseline.

4.3 Effectiveness Comparison (RQ2)

Settings. Having verified MaskDroid’s robustness against adver-
sarial attacks, we now investigate whether this robustness comes
at the expense of detection effectiveness. To measure the detection
effectiveness of MaskDroid and its baselines, we evaluate their
performance on the testing set using standard metrics, including
precision, recall, F1-score, and accuracy, following the standard
practice in Android malware detection [31, 63]. Specifically, preci-
sion and recall measures correctly detect malware against all de-
tected malware and all actual malware, respectively. The F1-score,
calculated as 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 , represents the balance between
precision and recall. Accuracy is the ratio of correctly classified
apps to the total number of analyzed apps. This experiment is con-
ducted on the dataset from 2016 to 2020. Additionally, temporal bias
is widely recognized as a key factor influencing the effectiveness of
malware detectors [42]. We also explore its impact on MaskDroid.
Specifically, we train the model using data collected from 2016 to
2019 and evaluate it on data from 2020.

Table 3 demonstrates the detection effectiveness of MaskDroid
and its baselines. From the results, we observe that MaskDroid
achieves a precision of 0.709, recall of 0.876, F1-Score of 0.783, and
accuracy of 0.951. While MaskDroid’s F1-Score is lower than some
baselines, such as MalScan [63] and MamaDroid [46], it is impor-
tant to note that MaskDroid’s F1-Score is still competitive. We
can see that MaskDroid achieves the highest recall among all

Table 4: The detection effectiveness of MaskDroid and its

baselines on the temporal biased dataset.

Detectors Precision Recall F1 Accuracy

Malscan 0.650 0.372 0.473 0.916

MamaDroid 0.934 0.272 0.421 0.924

Drebin 0.743 0.466 0.573 0.929

MsDroid 0.642 0.211 0.317 0.908

RAMDA 0.531 0.562 0.546 0.905

MaskDroid 0.541 0.630 0.582 0.908

baselines, indicating its superior ability to detect Android malware.
This phenomenon is in line with the design of MaskDroid, which
aims to enhance the model’s capability to counteract adversarial
attacks. By training the model to learn the underlying semantics
and identify more malicious signals in the graph, MaskDroid is
more likely to detect a greater number of malware samples and
adversarial examples. However, this also leads to the misclassifica-
tion of some benign apps as malware, resulting in lower precision
compared to several baselines. Given the trade-off between detec-
tion robustness and effectiveness, we believe that MaskDroid’s
performance is satisfactory and competitive with existing Android
malware detectors.

Table 4 presents the detection effectiveness of MaskDroid and
its baseline models in the presence of temporal bias. We observe
that MaskDroid achieves superior results in terms of F1-score,
demonstrating its ability to detect malware even when faced with
temporal bias. This can be attributed to MaskDroid ’s focus on
learning high-quality representations that encode malicious pat-
terns, which remain stable and robust over time.

Result 2: MaskDroid achieves detection effectiveness compa-
rable to existing Android malware detectors in both same-time
distribution scenarios and situations involving temporal bias.

4.4 Ablation Study on MaskDroid (RQ3)

In this section, we investigate the impact of different design choices
on the performance of MaskDroid. Specifically, we conduct abla-
tion experiments on various components (i.e., reconstruction mod-
ule, contrastive module, and the masking mechanism) to explore
how they contribute to MaskDroid’s robustness and effectiveness
in Android malware detection.

4.4.1 Effect of Reconstruction/Contrastive Modules. To clarify
our description, we first introduce the terminology used in this sec-
tion. MaskDroid-cr refers to a version of MaskDroid where both
the contrastive and reconstruction modules have been removed,
as illustrated in Figure 4. MaskDroid-c means replacing the con-
trastive module in Figure 2 with an MLP as the binary classifier.
MaskDroid-r denotes disabling the reconstruction mechanism in
Figure 2, and feeding the readout from encoder 𝑓𝐸 directly into the
contrastive module.

Table 5 presents the detection effectiveness of MaskDroid and
its ablated versions. As shown, MaskDroid achieves the highest



MaskDroid: Robust Android Malware Detection with Masked Graph Representations ASE, 2024, Sacramento, CA, US

Graph Representation

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

Encoder 𝒇𝑬
𝒉𝟏
𝒉𝟐
𝒉𝟑
𝒉𝟒
𝒉𝟓

Readout

Input Instance  𝒈𝒊 , y𝒊

Cross Entropy Loss 
(y𝐩𝐫𝐞𝐝, y𝒊)

MLP 𝒇𝑴

Figure 4: Framework of the model MaskDroid-cr that dis-

ables both the contrastive module and the reconstruction

module fromMaskDroid. The input graph goes through a

two-layer GNN encoder, proceeds with a readout layer, and

is then fed into an MLP classifier.

performance with an F1-Score of 82.4%. When the contrastive mod-
ule (MaskDroid-c) or the reconstruction module (MaskDroid-r)
is removed, the F1-Score drops to 77.4% and 79.9%, respectively.
This indicates that both the reconstruction and contrastive modules
are essential for MaskDroid to achieve optimal performance in
malware detection. Interestingly, the model without either module
(MaskDroid-cr) still achieves a relatively high F1-Score, surpassing
MaskDroid-c and MaskDroid-r, which suggests that the two mod-
ules complement each other to enhance the model’s performance.
We can also observe a clear trend in precision and recall, that is,
MaskDroid has lower precision and higher recall compared to
when two modules are removed. This is because MaskDroid uses
reconstruction and contrastive modules to enhance its ability to
capture malicious signals, significantly improving recall (the proba-
bility of detecting more malware). Although this introduces several
false positives, the overall F1-score continues to improve.

We further evaluate the robustness of MaskDroid and its ablated
versions against adversarial attacks. Given that white-box adversar-
ial attacks are more effective than black-box attacks, our focus in
this ablation study is on the former. The left part in Figure 5 demon-
strates the impact of the reconstruction and contrastive modules
on the model’s robustness against the white-box adversarial attack.
The results show that MaskDroid significantly lowers the Attack
Success Rate (ASR) compared to MaskDroid-c, MaskDroid-r, and
MaskDroid-cr, indicating its superior robustness against adver-
sarial attacks. Comparing MaskDroid-c and MaskDroid-r with
MaskDroid-cr, we note that both MaskDroid-c and MaskDroid-r
exhibit a lower ASR, suggesting that the contrastive and reconstruc-
tion modules are crucial for enhancing the model’s robustness.

4.4.2 Effect of mask rate 𝛾 . The masking mechanism is one of
our key designs to encourage MaskDroid to learn a more holistic
representation of the input graph. Selecting an appropriate mask
rate 𝛾 is crucial for our model’s performance. In this section, we
vary the mask rate (i.e., 0.2, 0.5, 0.8, 0.9) to examine its influence on
the detection effectiveness and robustness of MaskDroid.

Table 5: Ablation study on reconstruction and contrastive

modules for Android malware detection performance.

Models Precision Recall F1 Accuracy

MaskDroid-cr 0.918 0.730 0.813 0.965

MaskDroid-c 0.886 0.688 0.774 0.958

MaskDroid-r 0.896 0.720 0.799 0.962

MaskDroid 0.772 0.883 0.824 0.961

Figure 5: Ablation study on reconstruction/contrastive mod-

ules and mask rate 𝛾 for MaskDroid’s robustness against

white-box adversarial attacks. The left subfigure presents the

results of the reconstruction/contrastive modules, while the

right subfigure illustrates the impact of the mask rate 𝛾 .

Table 6 presents the changes in detection performance as the
mask rate 𝛾 varies. We observe that MaskDroid’s detection effec-
tiveness is not overly sensitive to the mask rate. Specifically, when
the mask rate increases from 0.2 to 0.9, the F1-Score falls slightly
from 0.789 to 0.824. One potential explanation is that MaskDroid’s
contrastive module can effectively learn the differences between the
benign and malicious samples, even when the input graph is par-
tially masked. Delving deeper into the robustness of MaskDroid
against adversarial attacks, we find that the model’s performance
is more sensitive to the mask rate. As shown in the right part of
Figure 5, the ASR is lowest (0.180) when the mask rate is 0.5, and
increases to 0.458 when the mask rate is 0.8. This may be because
a higher mask rate introduces more noise into the input graph,
making it more challenging for the model to learn the underlying
patterns. Therefore, selecting an appropriate mask rate is crucial
for MaskDroid to achieve optimal performance in both malware
detection and defense against adversarial attacks. We leave how to
automatically determine the mask rate as future work.

4.4.3 Visualization of Representations. The main contribution
of MaskDroid is to learn high-quality representations that grasp
the holistic understanding of app behaviors and derive a clear de-
cision boundary to achieve impressive discriminative power for
both malware and adversarial examples. To further understand
the internal representations learned by MaskDroid, we visualize
the latent representations obtained by MaskDroid and its variant
MaskDroid-cr, which disables the reconstruction and contrastive
modules. We adopt the t-SNE technique to project the graph repre-
sentation for each input sample onto a 2D space [57].

Figure 6 illustrates the representations learned by MaskDroid
and MaskDroid-cr. In the figure, the green points represent the
representations of benign samples, while the red points represent
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Table 6: Ablation study on mask rate 𝛾 for Android malware

detection performance.

Mask Rate Precision Recall F1 Accuracy

𝛾 = 0.1 0.685 0.888 0.773 0.947
𝛾 = 0.2 0.720 0.874 0.789 0.952
𝛾 = 0.3 0.744 0.851 0.794 0.955
𝛾 = 0.4 0.751 0.884 0.812 0.958
𝛾 = 0.5 0.772 0.884 0.824 0.961
𝛾 = 0.6 0.756 0.865 0.807 0.958
𝛾 = 0.7 0.757 0.884 0.816 0.959
𝛾 = 0.8 0.728 0.897 0.804 0.955
𝛾 = 0.9 0.724 0.869 0.790 0.952

those of malicious samples. We can see that the latent representa-
tions learned by MaskDroid are more compact than those learned
by MaskDroid-cr. Also note that MaskDroid achieves a much
clearer decision boundary, where the benign and malicious samples
are more distinctly separated. The compact representations and
clear boundary not only enable the model to excel in classification
tasks but also significantly increase the difficulty of adversarial
attacks, thus resulting in its enhanced robustness [19]. This can
be attributed to the ability of the reconstruction and contrastive
modules to learn the underlying patterns in the input graph and
differentiate different types of samples.

Result 3: All of our choices in designing MaskDroid, including
the reconstruction and contrastive modules, as well as the mask
rate 𝛾 , are crucial for enhancing the model’s effectiveness and
robustness in malware detection.

4.5 Efficiency Evaluation (RQ4)

In addition to the robustness and effectiveness of MaskDroid,
efficiency is another critical factor influencing the model’s practi-
cality. In this section, we compare the training costs of MaskDroid
with its baseline and variant models to evaluate its efficiency. For a
fair comparison, we exclude MamaDroid [46], Malscan [63], and
Drebin [10], as they utilize traditional machine learning models to
extract features and train classifiers, which are not comparable to
deep learning models in terms of training cost. It is important to
highlight that when training these detectors, we apply the early
stopping strategy to prevent over-fitting. Additionally, the training
process is conducted on the same server with the same configura-
tion as mentioned in Section 4.1.1.

Table 7 summarizes the training costs of MaskDroid and its
baseline or variant models. We observe that MaskDroid requires
150 epochs to converge, lasting 2,100 seconds in total. This is compa-
rable toMsDroid and significantly less than RAMDA’s strategy, indi-
cating that MaskDroid does not sacrifice efficiency for robustness.
By further comparing MaskDroid with its variant models (i.e., , -cr,
-c, -r), we observe that MaskDroid-cr takes the least time to con-
verge, which is expected as it does not involve the reconstruction
and contrastive modules. We also note that MaskDroid requires a
comparable amount of time to MaskDroid-r and MaskDroid-c,
indicating that the two modules are not simply additive but work

(a) MaskDroid (b) MaskDroid-cr

Figure 6: A more compressed representation learned by

MaskDroid compared to MaskDroid-cr, which disables the

reconstruction module and the contrastive module.

Table 7: Comparison of training costs between MaskDroid

and its baseline/variant models (on 2020 data).

MsDroid RAMDA

MaskDroid

MaskDroid

-cr -c -r

Epoch(s) 186 240 60 128 115 150
Total(s) 1,860 12,770 600 2,560 8,050 2,100

in meaningful cooperation to reinforce each other and achieve the
goal of robustness.

Result 4: MaskDroid achieves a balance between detection
robustness and efficiency, demonstrating superior resilience
against adversarial attacks while maintaining a moderate train-
ing cost compared to its baselines.

5 THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our study.
First, the effectiveness and robustness of MaskDroid may be influ-
enced by different hyper-parameters used in the neural networks.
To mitigate this threat, we adopt advanced practices from prior
studies [43, 68], employing a grid search to tune and find the opti-
mal hyper-parameters that yield the best performance on validation
sets. We detail all hyper-parameter settings in Section 4.1 for repro-
ducibility and release our evaluation artifacts, including codes and
datasets. Second, when conducting comparison experiments, we
utilize open-source implementations of baseline methods. However,
since we have tuned the hyper-parameters of these baselines to suit
our datasets and experimental settings, the performance of them
may differ from the results originally reported in the literature.
Third, we do not compare MaskDroid’s defensive capabilities with
other adversarial defense methods, such as adversarial training [7].
This is because these methods are orthogonal to our work and can
be integrated with MaskDroid to enhance further its robustness
against adversarial attacks, which we leave as future work. At last,
following previous studies [15, 63], we use the representative attack
algorithm JSMA to evaluate MaskDroid ’s robustness. However,
MaskDroid ’s resilience against new and evolving attack methods
remains unexplored, which we leave for future work.

6 RELATEDWORK

In this section, we begin by reviewing related work on machine
learning (ML)-based Android malware detection. Subsequently, we
describe the masking mechanism. Finally, we introduce common
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adversarial example generation methods and their corresponding
defense strategies.
ML-based Android Malware Detection. Machine learning (ML)
techniques have been extensively employed to analyze various
types of APK features and extract malicious patterns for Android
malware detection. Syntactical features, such as permissions, API
calls, code strings, and intents, are commonly used to model app be-
haviors [6, 10, 40, 53, 61]. For example, Xmal [61] uses an attention-
based MLP to distill malicious signals from the API calls and permis-
sions. RAMDA [40] feeds intents and API calls into an Autoencoder
to learn a resilient representation of the APKs for malware detection.
Drebin [10] first utilizes static analysis to extract features such as
permissions, intents, code strings, and API calls and then trains an
SVM classifier to identify Android malware. However, such meth-
ods may fail to capture the program semantics of apps, limiting the
detection effectiveness. To mitigate this issue, researchers turn to
extracting different app semantics for effective Android malware
detection [8, 20, 21, 31, 32, 35, 46, 47, 63, 64, 66]. DeepRefiner [66]
and Mclaughlin et al. [47] represent app bytecodes as texts and
images, respectively, applying LSTM and CNN to detect malware.
Malscan [63] and HomDroid [64] treat the function call graphs of
apps as social networks and apply the corresponding centrality
analysis algorithm to capture malicious patterns for Android mal-
ware detection. Furthermore, MsDroid [31] describes app-sensitive
behaviors with code snippets around sensitive API calls and em-
ploys graph neural networks to distill the semantic and structural
information to identify malware.
Masking Mechanisms. In the field of graph representation learn-
ing, masking and reconstructing graph features has proven to be
an effective approach for achieving robust learning [33]. Several
works have applied masking mechanisms to improve model robust-
ness in areas including image classification and text classification
[49, 65]. For example, PatchGuard [65] proposed a masking defense
to obscure corrupted features and recover the correct prediction
for image classification tasks. MASKER [49] regularizes language
models to reconstruct keywords from the remaining words and
make low-confidence predictions when there is insufficient con-
text. Inspired by the success of masking mechanisms in improving
model robustness, we pioneer and adapt this practice to enhance
the robustness of Android malware detection.
Adversarial Example Attack. With ML-based Android malware
detection evolving, attackers increasingly seek to evade these detec-
tors by purposefully perturbing the malicious APK samples. These
attacks can be categorized into feature-space attacks [7, 25, 34, 39,
55] and problem-space attack [15, 37, 38, 54, 71]. Feature-based
attacks target the feature vectors extracted from APKs directly, in-
tending to deceive detectors. For instance, Hu et al. [34] leverage the
capability of generative adversarial networks (GANs) [23] to modify
binary feature vectors, aiming to mislead the detectors. Grosse et
al. [25] propose a Jacobian matrix-based method to manipulate the
features, allowing malicious samples to escape detection. In con-
trast, problem-based attacks endeavor to produce real adversarial
malware. Specifically, HRAT [71] utilizes reinforcement learning
to strategically modify the structure of a malicious app without
affecting its original functionality. Li et al. [38] combine GAN with
a multi-population co-evolution algorithm to add try-catch edges

for crafting adversarial examples. Pierazzi et al. [54] explore the cre-
ation of adversarial malware by utilizing bytecode slices extracted
from benign APKs. Furthermore, Android HIV [15] establishes a
correspondence between the feature space and problem space, en-
suring that any feature perturbations do not compromise the core
functionality of the malware.
Adversarial Example Defense. To combat adversarial attacks,
one can approach the problem from two distinct angles: by forti-
fying the data [7, 14, 24, 48, 52] or by enhancing the model [18, 40,
51, 56]. For example, Huang et al. [7] devise a method to create a
diverse set of functionally preserved adversarial examples. By incor-
porating these diverse samples into the training process, they aim
to bolster the model’s resilience against adversarial attacks. Good-
fellow et al. [24] suggest mitigating adversarial example attacks
through model retraining. They incorporate the original dataset
with newly labeled adversarial malware examples, enhancing the
classifier’s familiarity with various malware. Taking a different
route, Bhagoji et al. [14] employ Principal Component Analysis
(PCA) to project all inputs into a lower-dimensional space, thus
diminishing the model’s susceptibility to adversarial attacks. Turn-
ing to strategies that directly fortify the model itself, RAMDA [40]
makes use of an autoencoder to derive a compressed representation
of APKs, thereby filtering out potential adversarial examples. Simi-
larly, Papernot et al. [51] adopt defense distillation to mitigate the
vulnerability of deep neural networks against minor perturbations.

7 CONCLUSION

In this work, we propose MaskDroid, a novel framework designed
to enhance robustness against adversarial attacks while maintain-
ing impressive discriminative power for Android malware detec-
tion. Specifically, we introduce a masking mechanism and force
MaskDroid to reconstruct the entire graph using the unmasked
part, enabling it to learn stable representations of the input graphs
more effectively. Additionally, MaskDroid incorporates a con-
trastive module to cluster samples of the same class together while
pushing samples of different classes apart, thereby enhancing the
model’s discriminative power. Grounded by extensive evaluations,
MaskDroid steadily outperforms state-of-the-art (SOTA) baselines
on adversarial attack defense tasks and achieves comparable per-
formance on malware detection tasks. A promising direction for
future work would be to extend the exploitation of the mask mech-
anism to attention masks with semantic information, which could
further enhance the model’s understanding of malicious behaviors.
Furthermore, since our strategy is applied to graph-based data and
is not restricted to specific graph structures, similar methods can
be extended to other graph-based datasets, such as control flow
graphs, to boost the model’s robustness.
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