KernJC: Automated Vulnerable Environment Generation

for Linux Kernel Vulnerabilities

Bonan Ruan, Jiahao Liu, Chugi Zhang, Zhenkai Liang

RAID, September 2024
Padua, ltaly

BB &

NUS
9

National University
of Singapore

Impact of Linux Kernel Vulnerabilities

* Privilege escalation on servers
* Android rooting
* Container escaping

Source: generated by ChatGPT

Active Exploitation Observed for Linux
Kernel Privilege Escalation Vulnerability
(CVE-2024-1086)

Home > News) Security > Google fixes Android kernel zero-day exploited in targeted attacks

Google fixes Android kernel zero-day exploited in targeted attacks

By Sergiu Gatlan August 5, 2024 06:40 PM 1

Linux Kernel Bug Allows Kubernetes Container Escape

{9 January 31,2022 ® Container Linux, container security, container vulnerability, kubernetes, Linux kernel

a by Nathan Eddy

Kernel Vulnerability Reproduction

* Reproduction is pivotal to the comprehension of vulnerabilities.

* Application Scenarios:
* Vulnerability severity assessment
* Design of detection and mitigation
e Evaluation of detection and mitigation

* Two crucial elements for reproduction:

e The vulnerable environment
e The Proof of Concept (PoC)

* Existing studies focus on PoC generation, while the generation of
reproduction environment is overlooked, but non-trivial.

Challenges

* Incorrect vulnerable versions:
* It is hard to guarantee that the selected kernel version is vulnerable, as the
vulnerability version claims in online databases are occasionally incorrect.
* Intricate kernel configs:

* For many kernel vulnerabilities, intricate non-default kernel configs must be
set to include and trigger these vulnerabilities, while less information is
available on how to recognize these configs.

o Jcommented on Apr 13, 2022

Hello, when building the test environment, | followed the steps above to
compile the kernel...it kept getting stuck...During the test, | didn‘t find any
'NFQUEUE’ rule in the target...

n s COMMented on Apr 13, 2022 Owner = Author = ***

kg)-

Hello, when building the test environment, | followed the steps above to compile the
kernel...it kept getting stuck...During the test, | didn‘t find any "'NFQUEUE rule in the target...

At the time, | selected many configs, and it's possible that some configs
were not included. First, check if it's an issue with the compilation options...

Example: CVE-2021-22555 (OOB in Netfilter)

B Vulnerable
B Non-vulnerable

* Vulnerable version ranges claimed by NVD:

begin Vo end . V, begin v, end I

Vo

e Actually, some versions have aIready been patched:

; end

glllll#.'b-
Vo begin Vo end . e Vi, begin

* Kernel configs needed for trlggermg this vulnerability:

CONFIG_COMPAT CONFIG_NETFILTER_XTABLES CONFIG_NETFILTER

CONFIG_NET CONFIG_NETFILTER_FAMILY_ARP CONFIG_NETFILTER_ADVANCED
CONFIG_INET CONFIG_IP_NF_IPTABLES CONFIG_NLATTR

CONFIG_IPV6 CONFIG_IP_NF_ARPTABLES CONFIG_GENERIC_NET_UTILS
CONFIG_BPF CONFIG_IP6_NF_IPTABLES CONFIG_NETFILTER_XT_TARGET_NFQUEUE

Given a kernel vulnerability, how can we identify the real vulnerable version and necessary configs?

* The presence of patch implies the absence of vulnerability.
e Kconfig and Kbuild mechanisms work in tandem to tailor the kernel.

» Kernel configs can be regarded as graph.

4)

Insights

* Given a kernel version, check the presence of patch.

* Parse the Kconfig and Makefile files into a graph.

* Abstract the config identification problem into a graph
searching problem.

Overview of KernlJC

—) Generate (Kernel Source Code (Online)]
mm) Used by ‘ ‘ @
(., - .)
Vulnerability Version Config Environment
Profiling Identification Identification Provisioning

=|=p

Il Kconfig Graph»- ’
CVE Info

oo 2|} it

Env

Release info & Updating h{@} Conflgs
. Rootfs
H Versions L y

Vulnerability Profiling: Collect vulnerability information for later usage.
Version Identification: Perform patch operation to detect patch presence.
Config Identification: Build Kconfig graph and mine reachable configs.
Environment Provisioning: Build the kernel and provision the virtual machine.

({0

Vulnerability Profiling

Config Identification

* ,

* CVE descriptions e)
* Vulnerable version ranges [meweveo] [racncommts | — = — rjg"] =] jgﬁ
e Patch commit(s) and contents f{ }

* Files affected by patches [K T ——

* Linux kernel version release list i == (5=] (e]

Incremental Aggregation & Updating

Version ldentification

Vulnerability Version Identification

* Locate the latest vulnerable version v claimed by NVD.

e Start from v and move downwards along the kernel version list:
* Apply the patch on vulnerability related files of each version.
* Stop when no patch presence detected.

e

\.

[

(o) Vul Version)
(O Patched Version E
‘—
S 4th check v/
bl AN
.......................................) d
N — % 3rd check X
= e]
=| |= s 2nd check X
........ — —
';b ?;b U 15! check x

Vulnerability Related Files Version

Patch

-

!
!

Vulnerable +if (len > PAGE_SIZE - 2 - size)

+

if (len > PAGE_SIZE - 2 - size)
if (size + len + 2 > PAGE_SIZE)

Patched +if (size + len + 2 > PAGE_SIZE)

+

if (len > PAGE_SIZE - 2 - size)
if (size + len + 2 > PAGE_SIZE)

Identification Process

Line deletion not found. Patch presence detected!

Identification Example

Vulnerability Config Identification

 Build the Kconfig graph for target kernel.

e Gather direct configs (D = DDC U DPC U DCC):
e DDC: Direct Description-level Configs
 DPC: Direct Path-level Configs
* DCC: Direct Code-level Configs

* For each configcin D:

e Locate c in the Kconfig graph.

* Discover hidden configs for ¢ (H. = HRC U HSC U HDC):

* HRC: Hidden Reachable Configs from ¢
* HSC: Hidden Configs with Select relation to ¢
* HDC: Hidden Configs with Depend relation c

 Collect all hidden configs.
e Final result =D U H.

Kconfig Graph

T

+
®

Code Path es

@@

DR

Locate direct configs in graph

L
&

<77

Identify hidden configs in graph)

[] Config
@ Direct Config
@ Hidden Config

Evaluation

* Research Questions:
 RQ1: How is KernlJC’s performance in reproduction of kernel vulnerabilities?

 RQ2: How well do the configs identified by KernJC facilitate the reproduction
of kernel vulnerabilities?

* RQ3: How many incorrect version claims in NVD can KernJC detect for Linux
kernel vulnerabilities?

 Dataset:
e RQ1 & RQ2: 66 real-world kernel CVEs with workable PoCs

* CVEs are collected from relevant research published on top security conferences in the
past five years.

* PoCs are collected from the Internet and modified to make them workable.
* RQ3: 2,256 kernel CVEs with associated patches

10

Performance in Reproduction

* KernJC successfully builds effective reproduction environments for all
66 vulnerabilities.

* 4 of 66 are detected to have incorrect (FP) version claims in NVD.
* 32 of 66 need non-default configs identified by KernJC to be activated.

ove | ukcr | nuoer | e

2016-10150 V X X 2018-12233 V X X 2020-27194 V X 2021-3490 V X
2016-4557 X X 20185333 V X X 2020-27830 V X X 20213573 X v
2016-6187 V X X 2018-6555 V X X 2020-28941 V X X 2021-42008 V X X
2017-16995 V X X 2019-6974 V X X 2020-8835 V X X 2021-43267 V X X
2017-18344 V X X 2020-14381 V v v 2021-22555 V X v 2022-0995 V X X
2017-2636 V X X 2020-16119 V X X 2021-26708 V' X X 2022-1015 V X X
2017-6704 V X X 2020-25656 V v v 2021-27365 V X X 2022-25636 V X X
2017-8824 V X X 2020-25669 V X X 2021-34866 V' X X 2022-32250 V X X
2022-34918 V X X 2023-32233 V X X
RwKC: Reproducibility with KernJC-identified Configs FPV: False Positive Version claims in NVD
RwDC: Reproducibility with Default Configs 11

Configs Identified by KernlJC

e Half of the 32 vulnerabilities necessitate HSC or HDC for activation.

e Consequently, HSC and HD(identified by KernJC play an important role in
constructing effective reproduction environments for kernel vulnerabilities.

oo e Lo bocc e Loc Jor____oclore oce L ec Loc

CVE-2016-10150 0 CVE-2021-34866 O

CVE-2016-4557 0 1 0 0 2 0 CVE-2021-3490 0 1 0 0 2 2
CVE-2016-6187 0 1 0 14 0 2 CVE-2021-3573 0 1 0 32 0 45
CVE-2017-16995 0 1 0 0 2 0 CVE-2022-1015 0 1 0 4 0 241
CVE-2019-6974 0 1 0 42 0 4 CVE-2022-25636 O 4 0 19 2 241
CVE-2020-27194 0 1 0 0 2 1 CVE-2022-32250 O 1 0 4 0 238
CVE-2020-8835 0 1 0 0 2 1 CVE-2022-34918 O 1 0 4 0 238
CVE-2021-22555 0 7 1 10 3 406 CVE-2023-32233 O 2 0 5 0 317

Vulnerabilities relying on HSC or HDC

12

Incorrect Version Claims in NVD

* We identify 128 vulnerabilities with incorrect version claims in NVD.

* The aggregate count of incorrect (FP) versions is 3,042.
* averaging 24 incorrect versions per identified vulnerability.

_ FP Version Range Vulnerable Version | FP Count

CVE-2017-1000407 v4.14.6 —v4.14.325 v4.14.5

CVE-2017-18216 v4.14.57 —v4.14.325 v4.14.56 269
CVE-2017-18224 v4.14.57 —v4.14.325 v4.14.56 269
CVE-2020-35508 v5.9.7 —v5.11.22 v5.9.6 229
CVE-2021-4002 v5.15.5-v5.15.132 v5.15.4 128
CVE-2021-4090 v5.15.5-v5.15.132 v5.15.4 128
CVE-2022-0264 v5.15.11-v5.15.132 v5.15.10 122
CVE-2021-4155 v5.15.14 -v5.15.132 v5.15.13 119
CVE-2016-10906 v4.4.191-v4.4.302 v4.4.190 112
CVE-2015-4170 v3.12.7-v3.13.3 v3.12.6 72

Top 10 vulnerabilities sorted by FP version count 13

Conclusion

* We point out two challenges in the generation of vulnerable
environments for Linux kernel vulnerabilities.

* We propose patch-based and graph-based approaches to solve these
challenges.

* KernJC: automated vulnerable environment generation for Linux
kernel vulnerabilities

* https://github.com/NUS-CURIOSITY/KernJC

Thank youl!
Contact me at r-bonan@comp.nus.edu.sg

14

https://github.com/NUS-CURIOSITY/KernJC

@ iTerm2 Shell Edit View Session Scripts Profiles Toolbelt Window Help 0 ¢« 0O 0 Un @ = ma I 1647

(venv) » KernlC git:(main) x ./kjc build CVE-2021-22555
[*] Building environment for CVE-2021-22555

