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Security Threats and Risks of Android Malware

1

Android malware poses increasing security threats and risks 

Number of detected malicious install packages

Detecting Android malware before installation is the key to mitigate 
these security threats and risks



ML-based Android Malware Detection

Characterize apps and identify malicious patterns to distinguish malware

Syntax-based methods [Drebin @NDSS’14, XMAL @TOSEM’21, …]
• Model app behaviors with discrete features, e.g., permission, API calls
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Semantic-based methods [Malscan @ASE’19, MsDroid @TDSC’22, …]
• Distill semantics from apps’ graph representations
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General workflow of ML-based Android malware detection

Permissions: INTERNET …
API calls: getIpAddress …



Vulnerable to Adversarial Attacks

Adversarial attack purposely modifies the graph structure to bypass the 
detection
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extracting Detector
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Research Problem: Given the graph representation, could we design a 
robust and effective Android malware detector?



Masking and reconstructing mechanisms are effective for robust learning
l Encourage models to capture overall information even if some features are 

purposely changed

Our Insights
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Masking Reconstructing

Inspiring

Contrastive strategy can better investigate the relationships among samples
l samples within the same class are drawn closer together, while those from different 

classes are pushed further apart



MaskDroid: Overview
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Given an Android app, output the probability of being malicious
• Mask and reconstruct graphs to learn robust representations
• Separate malware with a contrastive strategy

Reconstruction 
Module

Contrastive 
Module 

Hyper
plane-/+ +/-



Key Idea: masking and reconstructing the graph structure to learn a robust 
representation of malicious behavior

l Mask the graph to construct incomplete graph representation
l Concatenate opcode and permission to represent graph node features
l Apply uniform random sampling to choose a subset of nodes and mask their representations

Reconstruction Module
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Key Idea: masking and reconstructing the graph structure to learn a robust 
representation of malicious behavior

l Encode the graph representation with GNN Encoder
l Propagate and aggregate node information across edges, enabling the model capture both local and 

global graph dependencies
l getAndroidAddress -> getWifiIpAddress -> isWifiEnabled | getIpAddress

Reconstruction Module
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Key Idea: masking and reconstructing the graph structure to learn a robust 
representation of malicious behavior

l Reconstruct the masked nodes to allow the model can infer overall information from 
partial nodes and edges

l Ensure the model recover masked nodes based solely on their surrounding nodes -> remask
l Another GNN to capture structural information and recover nodes

Reconstruction Module
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Key Idea: masking and reconstructing the graph structure to learn a robust 
representation of malicious behavior

l Objective: measure the distance between the original node features and the 
reconstruction features 

Reconstruction Module

9

Maked Graph

[MASK]

[MASK]
[MASK]

𝒙𝟐
𝒙𝟒

Encoder 𝒇𝑬

𝒉𝟐

𝒉𝟒

[REMASK]

[REMASK]

[REMASK]

[REMASK]
Decoder 𝒇𝑫

𝒉𝟏
𝒉𝟐
𝒉𝟑
𝒉𝟒
𝒉𝟓

Reconstructed Graph
𝒛𝟓

𝒛𝟑

𝒛𝟏

Reconstruction Loss (𝑧i ,𝑥i)

With the reconstruction module, MaskDroid can recover the overall graph 
information, even if the graph is partly corrupted



Contrastive Module
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Key Idea: Apps within the same class should be closer to each other, while 
apps from different classes should be more distant

l Define two proxies for benign and malicious classes to guide the contrastive learning
l Each instance is pulled closer to the proxy of its own class while being pushed further from the other 

proxy 
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With the contrastive module, MaskDroid can learn a compact representation 
for each class and forms clear boundaries between different classes



Detecting Android Malware

Transforms the input graph into a graph-level representation using the 
encoder and calculate the distance with benign and malicious proxies
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Detecting Android malware by calculating the distance



Evaluation
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Experiment Setup:
l Around 114k apps collected from AndroZoo – a continuously expanding repository of 

Android apps sourced from platforms such as Google Play, Appchina, and Anzhi
l Covering a wide range of apps (5 years)
l Mirroring real-world malware distribution (the ratio of goodware to malware is set as 9:1)
l Filtering out grayware with positive anti-virus alerts from VirusTotal 

Evaluation aspects:
l Does MaskDroid improve the robustness against different adversarial attacks?
l Does MaskDroid sacrifice detection effectiveness to enhance its robustness?
l To what extent do different design choices affect MaskDroid’s performance?



Investigate whether MaskDroid can enhance its robustness against adversarial 
attacks compared to existing solutions (white-box and black-box)
• Attack Success Rate (ASR), Average Perturbation Ratio (APR)

Robustness Enhancement
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White-box Attack

Compared with state-of-the-art solutions, MaskDroid enhances robustness 
against adversarial attack, especially in white-box attack.

Detectors Malscan MamaDroid Drebin

ASR 98.5% 69.0% 100%
APR - - -

Detectors MsDroid RAMDA MaskDroid

ASR 13.2% 19.2% 19.1%
APR 0.5% 1.5% 10.1%

black-box Attack



Investigate whether the improved robustness comes at the expense of 
detection performance (F1-score)

• Training and testing data within the same period
• Temporal split: Training with previous, testing with later data

Effectiveness Comparison

Time Span Malscan Mamadroid Drebin MsDroid RAMDA MaskDroid
Same time 0.808 0.838 0.736 0.598 0.811 0.783

Time bias 0.473 0.421 0.573 0.317 0.546 0.582
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MaskDroid achieves detection effectiveness comparable to existing Android 
malware detectors in both same-time and temporal bias scenarios.



Investigate the effects of reconstruction and contrastive modules on the 
robustness and effectiveness of MaskDroid

Evaluating the Design of MaskDroid
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Robustness of various models

Both reconstruction and contrastive modules contribute to the 
performance of MaskDroid.

Models Precision Recall F1-score Accuracy

MaskDroid-cr 0.918 0.730 0.813 0.965

MaskDroid-c 0.886 0.688 0.774 0.958

MaskDroid-r 0.896 0.720 0.799 0.962
MaskDroid 0.772 0.883 0.824 0.961

Effectiveness of various models



Visualize the embeddings of MaskDroid and its variant with the contrastive 
and reconstruction modules disabled

Evaluating the Design of MaskDroid
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MaskDroid more effectively separates malware from benign apps, 
providing a compact representation and clear boundaries.



Conclusion

We propose MaskDroid:
• Learn robust graph representation encoding malicious behaviors with graph masking 

and reconstruction
• Incorporate proxy-based contrastive learning to better separate benign and malicious 

Android apps 
• Release code and data at: https://github.com/SophieZheng998/MaskDroid 
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https://github.com/SophieZheng998/MaskDroid

