
Learning Graph-based Code Representations for
Source-level Functional Similarity Detection

Jiahao Liu*, Jun Zeng*, Xiang Wang, and Zhenkai Liang

IEEE/ACM ICSE, May 2023

The cornerstone of various software engineering tasks:

Cc*

Code Functional Similarity Detection

1

Bug detectionCode search

Given a code fragment c*, and a corpus of code fragments C = {c1, c2, …},
how to identify candidates in C that are functionally similar with c*?

Code classificationCode clone detection

Token-based methods [Sourcerercc @ICSE’16, NIL @FSE’21, …]
• Lack of program structures textually different yet structurally similar codes

Previous Solutions Detecting Code Similarity

2

bool isfactor int a int b bool res = …

Tree-based methods [ASTNN @ICSE’19, InferCode @ICSE’21, …]
• Agnostic to program semantics semantically similar programs with different syntax

Graph-based methods [Deepsim @FSE’18, …]
• Focus on local information lack of overall graph structure

• Which code representations should be used to comprehend programs?
 Abstract Syntax Tree (AST) well describes program syntax; Control Flow Graph (CFG)

and Data Flow Graph (DFG) carry semantic information
 Combining AST, CFG, and DFG together as Code Property Graph (CPG) benefits

program understanding

 How to capture useful information from CPG for similarity detection?
 Graph neural network (GNN) is powerful at capturing graph-structure features
 GNN is not originally designed for program analysis
 Tailor a GNN to learn graph-based code representation for similarity detection

Our Insights

3

Goal: Customize a Graph Neural Network on Code Property
Graph to facilitate functional similarity detection

TAILOR: Overview

4

Code Fragments Developers

CPG-based Neural
Network (CPGNN)

Source Code
Classification

Code Clone
Detection

Code Property
Graph (CPG)

• Transform code fragments into code property graph (CPG)
• Model code representations with GPG-based Neural Network (CPGNN)
• Detect code functional similarity (code clone and classification)

Code Property Graph (CPG)

Code property graph (CPG) integrates abstract syntax tree (AST), control flow
graph (CFG), and data flow graph (DFG)

• Extract AST as the basis for generating other code representations
• Identify CFG by analyzing control flows within and across functions
• Identify use-def variables in code statements to form data-flow edges
• Unify AST, CFG, and DFG into a joint CPG, whose nodes are the same with AST nodes,

and edges include AST, CFG, DFG edges

5

Abstract
Syntax
Tree (AST)

Extract Unify
Code Property
Graph (CPG)Identify

Data Flow
Graph (DFG)

Control Flow
Graph (CFG)

Key Idea: design a graph neural network (CPGNN) tailored to learn code
representations for functional similarity detection

 Fuse type and token features to represent CPG nodes
 Employ word2vec to embed type and token symbols into the vector space
 Concatenate type and token embeddings to generate CPG node embedding

Aggregation
Initialization

𝒍𝒍 = 𝟑𝟑
𝒍𝒍 = 𝟐𝟐

𝒍𝒍 = 𝟏𝟏 Propagation
type

token
identifier
isfactor

CPG-based Graph Neural Network

6

identifier

isfactor

Word2Vec &
 concatenate Fused embedding

CPG node

CPG-based Graph Neural Network

7

Key Idea: design a graph neural network (CPGNN) tailored to learn code
representations for functional similarity detection

 Propagate node embeddings along CPG edges to learn graph structures
 Enrich node semantics and contexts with graph structure, e.g., how variables are defined and used

 Propagate neighbor information along CPG paths

FUNCDEF
STATEMENT Param list Param Identifier

a

Aggregation
Initialization

𝒍𝒍 = 𝟑𝟑
𝒍𝒍 = 𝟐𝟐

𝒍𝒍 = 𝟏𝟏 Propagation
type

token
identifier
isfactor

CPG node

Neighbor Information

CPG-based Graph Neural Network

8

Key Idea: design a graph neural network (CPGNN) tailored to learn code
representations for functional similarity detection

 Update node embeddings with neighbor information
 Recent studies apply GRU from off-the-shelf GGNN [Devign @NeurIPS’19]
 Limitation: Increase training difficulty and decrease GNN’s effectiveness
 Solution: Concatenation with a trainable matrix

Aggregation
Initialization

𝒍𝒍 = 𝟑𝟑
𝒍𝒍 = 𝟐𝟐

𝒍𝒍 = 𝟏𝟏 Propagation
type

token
identifier
isfactor

CPG node

||
𝑊𝑊𝑔𝑔

Node Embedding Neighbor Embedding 1-hop Embedding

CPG-based Graph Neural Network

9

Key Idea: design a graph neural network (CPGNN) tailored to learn code
representations for functional similarity detection

 Stack multi-hop neighbor information
 Neighbor information at different hops describes global graph structure
 Concatenate multi-hop neighbor embeddings to generate final node representation

Aggregation
Initialization

𝒍𝒍 = 𝟑𝟑
𝒍𝒍 = 𝟐𝟐

𝒍𝒍 = 𝟏𝟏 Propagation
type

token
identifier
isfactor

CPG node

||
1-hop Embedding Final node representation2-hop Embedding

Learning to Code Similarity Detection

To produce neural representations for a code fragment, we combine its CPG
nodes using the pooling operation

10

• Code clone detection (CCD): calculate Euclidean distance of code representations to
infer clone pairs

• Source code classification (SCC): apply fully connected layers (MLP) to classify it into
different categories

Distance > 0.5

Code clone detection (CCD)

MLP
0.64

0.03
0.05

C2

C1

CM

Largest CM

Source code classification (SCC)

Evaluation

11

Experiment Setup:
 OJClone constructed from 52,000 C programs belonging to 104 tasks

 Code Clone Detection (CCD): 19,800 clone pairs, 300,000 non-clone pairs
 Source Code Classification (SCC): all 52,000 programs

 BigCloneBench, constructed from 25,000 Java systems
 Code Clone Detection (CCD): 71,677 clone pairs and 20,000 non-clone pairs

Evaluation aspects:
 How effective is TAILOR in code clone detection and classification?
 How does CPGNN contribute to TAILOR compared with off-the-shelf GNNs?
 To what extent do different design choices of CPGNN affect TAILOR’s performance?

Compare TAILOR with state-of-the-art approaches on code clone detection (F-
score) and source code classification (Accuracy)

Effectiveness in Functional Similarity Detection

12

Token-based Tree-based Graph-based

Dataset SourcererCC NIL RtvNN Code2Vec ASTNN FCDetector FA-AST Mocktail TAILOR

OJClone 16.4 54.3 69.4 85.2 95.1 91.8 / 94.5 99.9

BCB 57.9 66.1 83.7 93.0 97.2 / 98.5 / 99.8

Tree-based Graph-based

Dataset Code2Vec InferCode ASTNN Mocktail TAILOR

OJClone 64.2 93.0 97.9 85.5 98.3

Code Clone Detection (CCD)

Source Code Classification (SCC)

TAILOR achieves state-of-the-art performance in functional similarity detection

• Compare different off-the-shelf GNN variants on OJClone

Comparison of Different GNNs

Task Metric CPGNN-NP LightGCN GCN GGNN KGAT CPGNN
CCD F-score 0.0 13.1 98.7 98.2 96.0 99.9

SCC Accuracy 72.0 79.6 97.6 96.7 95.2 98.3

13

• Visualize code representations produced by CPGNN-NP, GCN, and CPGNN

CPGNN shows the strongest capability to model code representations

Investigate the effect of embedding initialization, CPG representation, and
CPGNN layer number (A=AST, C=CFG, D=DFG)

Evaluating the Design of CPGNN

Embedding Initialization Code Representation CPGNN Layer

Task Metric Dataset Type Token Comb A A+C A+D A+C+D 1 3 5

CCD F-score OJClone 99.6 99.6 99.9 99.4 99.8 99.8 99.9 98.9 99.5 99.9

CCD F-score BCB 99.5 99.7 99.8 99.4 99.6 99.6 99.8 99.5 99.6 99.8

SCC Accuracy OJClone 97.7 97.8 98.3 97.9 98.1 98.0 98.3 96.4 97.6 98.3

14

TAILOR achieves the best performance (F-score in CCD, Accuracy in SCC):
• Node type and token both contribute to learn code representations

Investigate the effect of embedding initialization, CPG representation, and
CPGNN layer number (A=AST, C=CFG, D=DFG)

Evaluating the Design of CPGNN

Embedding Initialization Code Representation CPGNN Layer

Task Metric Dataset Type Token Comb A A+C A+D A+C+D 1 3 5

CCD F-score OJClone 99.6 99.6 99.9 99.4 99.8 99.8 99.9 98.9 99.5 99.9

CCD F-score BCB 99.5 99.7 99.8 99.4 99.6 99.6 99.8 99.5 99.6 99.8

SCC Accuracy OJClone 97.7 97.8 98.3 97.9 98.1 98.0 98.3 96.4 97.6 98.3

15

TAILOR achieves the best performance (F-score in CCD, Accuracy in SCC):
• Node type and token both contribute to learn code representations
• Code property graph (A+C+D) provides a comprehensive view of programs

Investigate the effect of embedding initialization, CPG representation, and
CPGNN layer number (A=AST, C=CFG, D=DFG)

Evaluating the Design of CPGNN

Embedding Initialization Code Representation CPGNN Layer

Task Metric Dataset Type Token Comb A A+C A+D A+C+D 1 3 5

CCD F-score OJClone 99.6 99.6 99.9 99.4 99.8 99.8 99.9 98.9 99.5 99.9

CCD F-score BCB 99.5 99.7 99.8 99.4 99.6 99.6 99.8 99.5 99.6 99.8

SCC Accuracy OJClone 97.7 97.8 98.3 97.9 98.1 98.0 98.3 96.4 97.6 98.3

16

TAILOR achieves the best performance (F-score in CCD, Accuracy in SCC):
• Node type and token both contribute to learn code representations
• Code property graph (A+C+D) provides a comprehensive view of programs
• Including multi-hop neighbors is beneficial to understand programs

Conclusion

• We propose TAILOR:
• Learn high-quality graph-based code representations
• Detect code functional similarity (code clone detection & source code classification)

• Insights:
• CPG carries essential information to present program syntax and semantics

• Customize a GNN to learn graph-base code representations by propagating node
information along CPG structures

17

Artifact: https://github.com/jun-zeng/Tailor

https://github.com/jun-zeng/Tailor

	Learning Graph-based Code Representations for Source-level Functional Similarity Detection
	Code Functional Similarity Detection
	Previous Solutions Detecting Code Similarity
	Our Insights
	Tailor: Overview
	Code Property Graph (CPG)
	CPG-based Graph Neural Network
	CPG-based Graph Neural Network
	CPG-based Graph Neural Network
	CPG-based Graph Neural Network
	Learning to Code Similarity Detection
	Evaluation
	Effectiveness in Functional Similarity Detection
	Comparison of Different GNNs
	Evaluating the Design of CPGNN
	Evaluating the Design of CPGNN
	Evaluating the Design of CPGNN
	Conclusion

