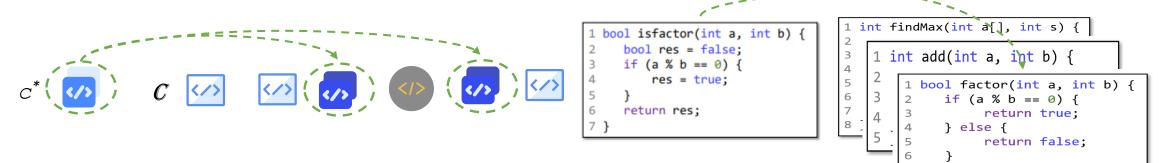
Learning Graph-based Code Representations for Source-level Functional Similarity Detection

Jiahao Liu^{*}, Jun Zeng^{*}, Xiang Wang, and Zhenkai Liang

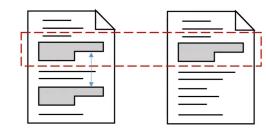
IEEE/ACM ICSE, May 2023

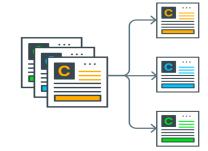
Code Functional Similarity Detection

Given a code fragment c^* , and a corpus of code fragments $\mathbb{C} = \{c_1, c_2, ...\}$, how to *identify* candidates in \mathbb{C} that are *functionally similar* with c^* ?



The cornerstone of various software engineering tasks:





Code clone detection

Code classification

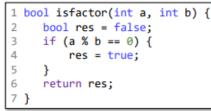
Code search

Bug detection

Previous Solutions Detecting Code Similarity

Token-based methods [Sourcerercc @ICSE'16, NIL @FSE'21, ...]

• Lack of program structures \rightarrow textually different yet structurally similar codes



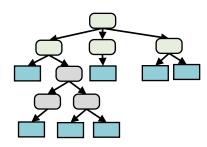
bool isfactor int a int b bool res = ...

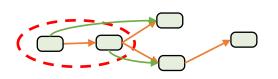
Tree-based methods [ASTNN @ICSE'19, InferCode @ICSE'21, ...]

• Agnostic to program semantics \rightarrow semantically similar programs with different syntax

Graph-based methods [Deepsim @FSE'18, ...]

• Focus on local information \rightarrow lack of overall graph structure



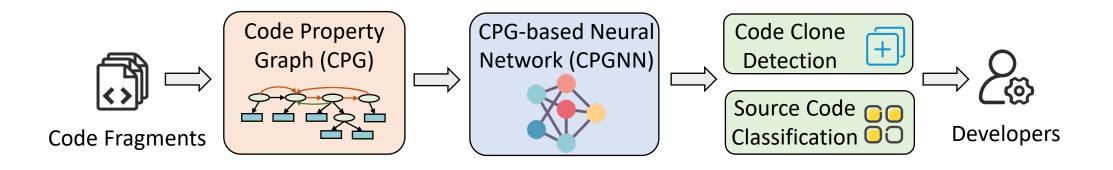


Our Insights

- Which code representations should be used to comprehend programs?
 - Abstract Syntax Tree (AST) well describes program syntax; Control Flow Graph (CFG) and Data Flow Graph (DFG) carry semantic information
 - Combining AST, CFG, and DFG together as Code Property Graph (CPG) benefits program understanding
- How to capture useful information from CPG for similarity detection?
 - Graph neural network (GNN) is powerful at capturing graph-structure features
 - GNN is not originally designed for program analysis
 - Tailor a GNN to learn graph-based code representation for similarity detection

Goal: Customize a Graph Neural Network on Code Property Graph to facilitate functional similarity detection

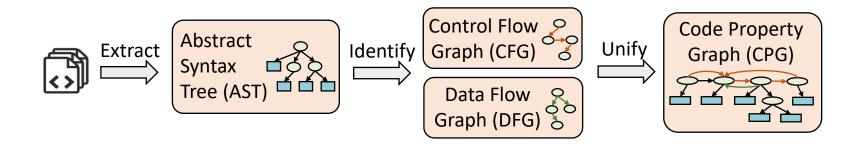
TAILOR: Overview



- Transform code fragments into *code property graph* (CPG)
- Model code representations with GPG-based Neural Network (CPGNN)
- Detect *code functional similarity* (code clone and classification)

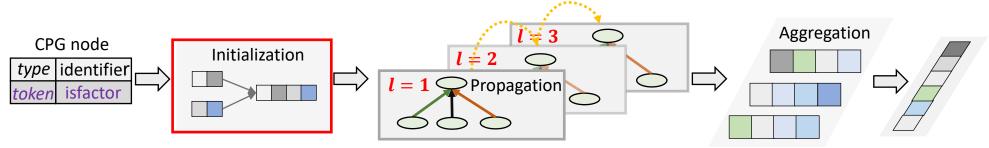
Code Property Graph (CPG)

Code property graph (CPG) integrates *abstract syntax tree* (AST), *control flow graph* (CFG), and *data flow graph* (DFG)



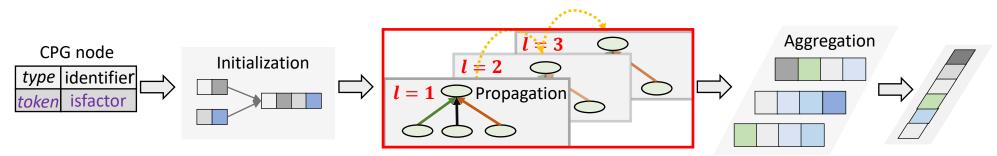
- Extract AST as the basis for generating other code representations
- Identify CFG by analyzing control flows within and across functions
- Identify use-def variables in code statements to form data-flow edges
- Unify AST, CFG, and DFG into a joint CPG, whose nodes are the same with AST nodes, and edges include AST, CFG, DFG edges

Key Idea: design a graph neural network (CPGNN) tailored to learn code representations for functional similarity detection



- Fuse type and token features to represent CPG nodes
 - Employ word2vec to embed type and token symbols into the vector space
 - Concatenate type and token embeddings to generate CPG node embedding

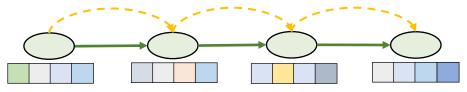
Key Idea: design a graph neural network (CPGNN) tailored to learn code representations for functional similarity detection



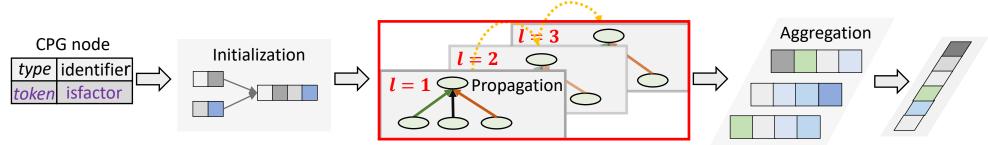
- **Propagate** node embeddings along CPG edges to learn graph structures
 - Enrich node semantics and contexts with graph structure, e.g., how variables are defined and used

• Propagate neighbor information along CPG paths





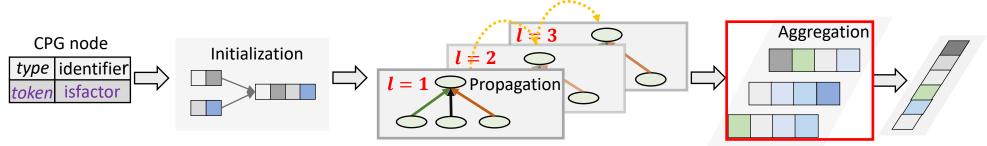
Key Idea: design a graph neural network (CPGNN) tailored to learn code representations for functional similarity detection



- Update node embeddings with neighbor information
 - Recent studies apply GRU from off-the-shelf GGNN [Devign @NeurIPS'19]
 - Limitation: Increase training difficulty and decrease GNN's effectiveness
 - Solution: Concatenation with a trainable matrix

1-hop Embedding

Key Idea: design a graph neural network (CPGNN) tailored to learn code representations for functional similarity detection



- *Stack* multi-hop neighbor information
 - Neighbor information at different hops describes global graph structure
 - Concatenate multi-hop neighbor embeddings to generate final node representation

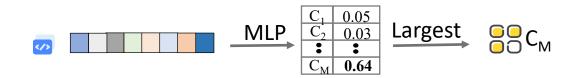
Learning to Code Similarity Detection

To produce neural representations for a code fragment, we combine its CPG nodes using the pooling operation

• Code clone detection (CCD): calculate Euclidean distance of code representations to infer clone pairs

Code clone detection (CCD)

 Source code classification (SCC): apply fully connected layers (MLP) to classify it into different categories



Source code classification (SCC)

Evaluation

Experiment Setup:

- OJClone constructed from 52,000 C programs belonging to 104 tasks
 - Code Clone Detection (CCD): 19,800 clone pairs, 300,000 non-clone pairs
 - Source Code Classification (SCC): all 52,000 programs
- BigCloneBench, constructed from 25,000 Java systems
 - Code Clone Detection (CCD): 71,677 clone pairs and 20,000 non-clone pairs

Evaluation aspects:

- How effective is TAILOR in code clone detection and classification?
- How does CPGNN contribute to TAILOR compared with off-the-shelf GNNs?
- To what extent do different design choices of CPGNN affect TAILOR's performance?

Effectiveness in Functional Similarity Detection

Compare TAILOR with state-of-the-art approaches on code clone detection (*F*-score) and source code classification (*Accuracy*)

Code Clone Detection (CCD)

	Token-bas	ed		Tree-based		Graph-based					
Dataset	SourcererCC	NIL	RtvNN	Code2Vec	ASTNN	FCDetector	FA-AST	Mocktail	TAILOR		
OJClone	16.4	54.3	69.4	85.2	95.1	91.8	/	94.5	99.9		
ВСВ	57.9	66.1	83.7	93.0	97.2	/	98.5	/	99.8		

Source Code Classification (SCC)

		Tree-based		based	
Dataset	Code2Vec	InferCode	ASTNN	Mocktail	TAILOR
OJClone	64.2	93.0	97.9	85.5	98.3

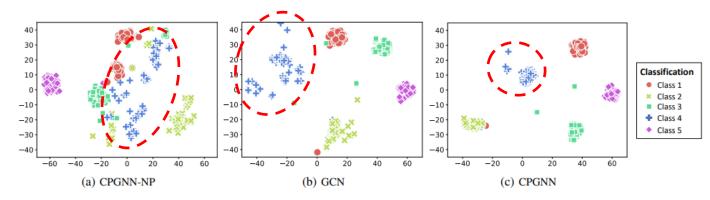
TAILOR achieves state-of-the-art performance in functional similarity detection

Comparison of Different GNNs

• Compare different off-the-shelf GNN variants on OJClone

Task	Metric	CPGNN-NP	LightGCN	GCN	GGNN	KGAT	CPGNN
CCD	F-score	0.0	13.1	98.7	98.2	96.0	99.9
SCC	Accuracy	72.0	79.6	97.6	96.7	95.2	98.3

• Visualize code representations produced by CPGNN-NP, GCN, and CPGNN



CPGNN shows the strongest capability to model code representations

Evaluating the Design of CPGNN

Investigate the effect of embedding **initialization**, CPG **representation**, and CPGNN **layer number** (A=AST, C=CFG, D=DFG)

			Embec	Embedding Initialization			Code Representation				CPGNN Layer		
Task	Metric	Dataset	Туре	Token	Comb	А	A+C	A+D	A+C+D	1	3	5	
CCD	F-score	OJClone	99.6	99.6	99.9	99.4	99.8	99.8	99.9	98.9	99.5	99.9	
CCD	F-score	BCB	99.5	99.7	99.8	99.4	99.6	99.6	99.8	99.5	99.6	99.8	
SCC	Accuracy	OJClone	97.7	97.8	98.3	97.9	98.1	98.0	98.3	96.4	97.6	98.3	

TAILOR achieves the best performance (F-score in CCD, Accuracy in SCC):

• Node type and token both **contribute** to learn code representations

Evaluating the Design of CPGNN

Investigate the effect of embedding **initialization**, CPG **representation**, and CPGNN **layer number** (A=AST, C=CFG, D=DFG)

			Embeo	Embedding Initialization			Code Representation				CPGNN Layer		
Task	Metric	Dataset	Туре	Token	Comb	А	A+C	A+D	A+C+D	1	3	5	
CCD	F-score	OJClone	99.6	99.6	99.9	99.4	99.8	99.8	99.9	98.9	99.5	99.9	
CCD	F-score	BCB	99.5	99.7	99.8	99.4	99.6	99.6	99.8	99.5	99.6	99.8	
SCC	Accuracy	OJClone	97.7	97.8	98.3	97.9	98.1	98.0	98.3	96.4	97.6	98.3	

TAILOR achieves the best performance (F-score in CCD, Accuracy in SCC):

- Node type and token both **contribute** to learn code representations
- Code property graph (A+C+D) provides a **comprehensive** view of programs

Evaluating the Design of CPGNN

Investigate the effect of embedding **initialization**, CPG **representation**, and CPGNN **layer number** (A=AST, C=CFG, D=DFG)

			Embedding Initialization			Code Representation				CPGNN Layer		
Task	Metric	Dataset	Туре	Token	Comb	Α	A+C	A+D	A+C+D	1	3	5
CCD	F-score	OJClone	99.6	99.6	99.9	99.4	99.8	99.8	99.9	98.9	99.5	99.9
CCD	F-score	BCB	99.5	99.7	99.8	99.4	99.6	99.6	99.8	99.5	99.6	99.8
SCC	Accuracy	OJClone	97.7	97.8	98.3	97.9	98.1	98.0	98.3	96.4	97.6	98.3

TAILOR achieves the best performance (F-score in CCD, Accuracy in SCC):

- Node type and token both **contribute** to learn code representations
- Code property graph (A+C+D) provides a **comprehensive** view of programs
- Including multi-hop neighbors is **beneficial** to understand programs

Conclusion

- We propose TAILOR:
 - Learn high-quality graph-based code representations
 - Detect code functional similarity (code clone detection & source code classification)
- Insights:
 - CPG carries essential information to present program syntax and semantics
 - Customize a GNN to learn graph-base code representations by propagating node information along CPG structures

